The pseudohyperbolic metric and Bergman spaces in the ball
نویسندگان
چکیده
منابع مشابه
The Pseudohyperbolic Metric and Bergman Spaces in the Ball
The pseudohyperbolic metric is developed for the unit ball of Cn and is applied to a study of uniformly discrete sequences and Bergman spaces of holomorphic functions on the ball. The pseudohyperbolic metric plays an important role in the study of Bergman spaces over the unit disk. It is defined in terms of Möbius self-mappings of the disk. As is well known, these conformal automorphisms genera...
متن کاملCompact Composition Operators on Bergman Spaces of the Unit Ball
Under a mild condition we show that a composition operator Cφ is compact on the Bergman space Aα of the open unit ball in C if and only if (1− |z|)/(1− |φ(z)|) → 0 as |z| → 1−.
متن کاملBall transitive ordered metric spaces
0. Introduction. If (X,≤) is a partially ordered set and A ⊆ X, then the decreasing hull d(A) of A in X is defined to be d(A) = {x ∈ X : x ≤ a for some a ∈ A}. If the poset X is not understood from the context, we may write dX(A). A subset A ⊆ X is a decreasing set if A = d(A). The intersection or union of any collection of decreasing sets in X is again a decreasing set in X. The increasing hul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2006
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-06-04064-5